
1

A Metaheuristic Approach to Test Sequence
Generation for Applications with a GUI

Sebastian Bauersfeld, Stefan Wappler, Joachim Wegener

Berner & Mattner Systemtechnik GmbH

22

Overview

• Motivation

• Approach

• Objective Function

• Application of ACO

• Test Environment

• Experiments: Fully Automatic Testing of CTE XL Professional

• Conclusion + Outlook

33

Motivation

• Many GUI based applications in all application
domains

• Tester’s task: finding, executing and evaluating
most interesting input sequences

• Input sequences are sequences of user actions
(mouse events, keyboard events etc., such as clicks,
drag and drop, keystrokes)

• Existing tools:
– Many Capture + Replay Tools available, but limited

applicability (e.g. B&M uses TestComplete and QF Test)
• Definition of test sequences

– by capturing user actions
– developing test scripts

• Only replay part is “automatic”

• Test suites require constant maintenance
• Labor intensive

�Automatic generation of input sequences is desirable

4

The Approach

4

5

Objective Function

5

6

Optimization Algorithm

6

7

Test Environment

7

8

Objective Function

8

Search for interesting test sequences

The larger the Call Tree of a sequence,

the more aspects of the SUT are tested
(McMaster et al.).

Call tree: Structure that displays calling relationships among methods of an

executed program. Each node represents a method. A directed edge between

two nodes f and g means, that the method f called the method g.

Sequence fitness: Number of call tree leaves (call trees with many leaves

most interesting for fault detection)

Implementation: Bytecode instrumentation of the SUT to obtain the call tree

� no source code needed

99

Objective Function: # Call Tree Leaves

1010

java Stat 1.0

Fitness = 2

Objective Function: # Call Tree Leaves

1111

Objective Function: # Call Tree Leaves

Fitness = 2

Fitness = 5

java Stat 1.0 java Stat 1.0 2.0 3.0

12

• ACO has been successfully applied to sequence generation
problems, e.g. TSP

• Seamless integration into the sequence generation process:
sequences are constructed step by step

• Independent of mutation and crossover

– Mutation and crossover are “destructive”

– Mutation: may lead to infeasible sequences (not all actions
are available in all contexts)

– Crossover: difficult to define, because sequence parts
cannot be arbitrarily exchanged, also leading to infeasible
sequences

12

Optimization Algorithm: Ant Colony Optimization

13

Optimization Algorithm: Ant Colony Optimization

13

Idea:

• C = component set (here: set of actions)

• Each component ci is associated with

a pheromone value pi

• Generate trails (sequences of user

actions) by selecting components

according to pheromone values pi

• After each generation reward components

that appear in “good” trails by increasing

their pheromones

• Selection Rule: pseudo random proportional

• Pheromone Update Rule:

(: learning rate, : average fitness of the trails

that ci appeared in)

iii rpp ⋅+−⋅= αα)1('

α r
i

1414

Test Environment: Scanning the GUI

• In order to perform actions we first
need to determine the visible control
elements and their properties (e.g.
to click a button: Is it enabled?
Coordinates?)

• This information is saved in a
widget tree, which is a hierarchical representation of the GUI and
its control elements and properties

• State of the GUI changes � widget tree needs to be
constructed after each performed action

1515

Active Widget Tree

1616

Active Widget Tree

1717

1818

1919

Test Environment: Derive + Execute User

Actions

• Based on the information in the

widget tree, we can derive a set

of “reasonable” actions

• After the optimization

algorithm selected an

action, it will be

executed, e.g. click

button, drag scrollbar,

…

Simplified Set of Possible Actions

20

Drawing area for

classification trees

Combination table for

test case specifications

Panel for establishing

RM / TM connections

Experiments: Fully Automatic Testing of CTE XL
Professional

Demo

• Demo

22

Experiment: Results

ACO Run

22

Random Run

desc length popsize generations time per

run

n avg best min max

aco 30 10 80 ~148 min 10 134729 113822 153978

rnd 30 10 80 ~148 min 10 89670 71480 101861

Systematic vs. Generated Test Sequences

• Automatic Regression Test Suite for CTE XL Professional

– 34 Sequences

– average length: 14 actions (max: 64, min: 6)

– average fitness: 61164 (max: 102031, min: 23466)

• Generated Sequences

– 34 Sequences

– length: 14

– average fitness: 91369 (max: 111866, min: 58248)

2424

Conclusion

• High demand for automatic GUI testing in industrial practice

• Typical B&M applications: CTE XL Professional, MESSINA (Eclipse RCP, SWT)

• Test environment allows to

– determine all possible user actions in each execution state

– selects the most interesting actions

– assesses overall quality of test sequences by analyzing the call tree

• Evaluation

– Application of search successful

– Initial experiments confirm better performance than random testing

– First interesting results compared to functional testing

• Functional testing for logical errors difficult, because guidance to unknown logical
errors hard to formalize

• Functional testing for exceptions, memory leaks, … possible

2525

Outlook

• Generate entire test suites

• Possible improvement of algorithm to be more explorative

– Prefer sequences with yet unexecuted actions

• Evaluate other objective functions

– not only number of call tree leaves, but method diversity within call tree,

or maximal call tree depth, etc.

– Other criteria such as code coverage, temporal testing, ...

• Increase efficiency

– Sequence generation is expensive � parallelization of sequence

execution

– ACO good choice? � disregards linkage among actions (context of

actions not considered during pheromone update)

• Fault sensitivity of generated sequences � empirical evaluation

