Of’i-‘ - P
R T A

optimizing youl

--i;;-
o3
=]

A Metaheuristic Approach to Test Sequence
Generation for Applications with a GUI

Sebastian Bauersfeld, Stefan Wappler, Joachim Wegener

Berner & Mattner Systemtechnik GmbH

O,?’-T_M e ﬂd F

herner&mattner pk 3)
L

optimizing you, elopment

Overview

* Motivation

* Approach

» Objective Function

* Application of ACO

» Test Environment

» Experiments: Fully Automatic Testing of CTE XL Professional

e Conclusion + Outlook

7'.—

¥
berner&mattner I-k il

optimizing your development = W

0

~

Motivation

» Many GUI based applications in all application
domains

» Tester’s task: finding, executing and evaluating
most interesting input sequences

* Input sequences are sequences of user actions
(mouse events, keyboard events etc., such as clicks,
drag and drop, keystrokes)

« Existing tools:
— Many Capture + Replay Tools available, but limited
applicability (e.g. B&M uses TestComplete and QF Test)
+ Definition of test sequences —_— -
— by capturing user actions =
— developing test scripts
* Only replay part is “automatic”
 Test suites require constant maintenance
« Labor intensive

» Automatic generation of input sequences is desirable e

< o Vr 9., W f’"-55— T

Flo i :
berner &mattner Fé bl o
optimizing your development] Pl

The Approach

instrument scan GUI to derive set
SUT for fitness generate of user
measurement widget tree actions
A
‘\
learn ("good" vs no select user

action

"bad" actions)

determine
sequence
fitness

execute

< yes .
user action

?"._
i

-

s

berner & mattner

optimizing your development

Objective Function

instrument scan GUI to derive set
SUT for fitness generate of user
measurement widget tree actions

learn ("good" vs no select user

"bad" actions)

determine

seguence ¢ yes

fitness

action

execute
user action

’ y ill R (! 4
~ ﬁ ¢
berner &mattner pk”" s

optimizing your development

Optimization Algorithm

instrument
SUT for fitness
measurement

scan GUI to derive set

learn ("good" vs
"pad" actions)

determine
sequence
fitness

¢~ yes

generate of user
widget tree actions
A
v
no select user

action

execute
user action

I

Z =y PIE R W

' AL x I '
berners mattner g 2 K~
—

Test Environment

instrument scan GUI fo derive set
SUT for fitness generate of user
measurement widget tree actions

.. [3 l

learn ("good" vs
"bad" actions)

no select_ user
action

determine
seqguence <& yes

fitness

execute
user action

8 |

T a
berner &mattner Zm

‘ < .
optimizing your development] Is * J
. . . nstrument scan GUI o derive sat
Objective Function @ o H :';,::;)
Search for interesting test sequences I
m
The larger the Call Tree of a sequence, b
the more aspects of the SUT are tested _
(McMaster et al.). @ 3;?3@ s
Call tree: Structure that displays calling relationships among methods of an

executed program. Each node represents a method. A directed edge between
two nodes fand g means, that the method f called the method g.

L -3
i =

Sequence fitness: Number of call tree leaves (call trees with many leaves
most interesting for fault detection)

Implementation: Bytecode instrumentation of the SUT to obtain the call tree
=> no source code needed

oy T

berner&mattner p-& o

optimizing your development = W

Objective Function: # Call Tree Leaves

1 public class Stat{
2 double[] data;
3 public static void main(String[] args)({
4 Stat s = new Stat(args);
5 s.calc();
6 }
7 public Stat(String[] args){
8 data = new double[args length];
9 for(int i = i < args.length; i++)
L0 data[i] = Double.parseDouble(args[i]);
i1 }
12 public void calc(){
i3 if(data.length > 1){
L4 System.out.println(mean() + ", " + var());
L5 }else{
16 System.out.println(data[0] + ", " + 0.0);
L7 }
s }
19 double mean(){
a0 double ret = 0.0;
b1 for(double d : data) ret += d;
p2 return ret / data.length;
b3 }
p4 double var({){
5 double ret = 0.
b6 for(double d : data) ret += Math.pow(d - mean(), 2);
p7 return ret / data.length;
bs }
bo 3
9
berner &mattner p& A
optimizing your development
. . .
.

Objective Function: # Call Tree Leaves
1 public class Stat{ i
2 double[] data; Java Stat 1 0
3 public static void maln(Strlng[] args){
4 E 5= new Statie]
5 [T{js |
6 }
7 public Stat(String[] args){
8 ata = new dnuble[args length];
9 for{int i = i < args.length; 1++)
ho [Karais e.parsebouble{args(111]
h1 }
12 public void calc(){
13 if(data.length > 1){
14 System.out.println(mean() + ", " + var());
15 }else{
16 Eystem.out.printin(qatal 0] + + 0.031
ey !

parse

19 double mean(){ @
po double ret = 0.0;
P1 for(double d : data) ret += d;
p2 return ret / data.length; .
b3 } Fitness = 2
P4 double var(){
p5 double ret = 0.0;
p6 for(double d : data) ret += Math.pow(d — mean{}), 2);
7 return ret / data.length;
bs }
bo 3

T o ¥Vir 9, @ FEH-

?#!4 5 = . I] \‘
Y VT A i \ B
..l......l..

Objective Function: # Call Tree Leaves

public class Stat{ java Stat 1.0 java Stat 1.0 2.0 3.0

double[] data;

public static void main(String[] args)({
[Bfat & = new Statl{orgs);]
Eealciys]

}

public Stat(String[] args){
data = new double[args.length];
for(int i = 0; i < args.length; i++)
[fatali] = Douvle.parsebouble(arys|iil]

)
public void calec(){
if(data.length > 1){
EFsrencur pronclnineanc) € v, Fvar{3i;]
}else{
System.out.println(data[0] + ", " + Vi
}
} parse
double mean(){ Double
double ret = H D":;zlee
for(double d : data) ret += d;

return ret / data.length; FItneSS 2

double var(){
double ret = ;
Boridouble d : data) ret *= Math.pow{d - mean{}, 23;]
return ret / data.length;

}

}
F|tness = 5

= O 5—9
7~ fz 2, W V¥
sernerimaner 2 DA ot JE L ONE
Optimization Algorithm: Ant Colony Optimization

» ACO has been successfully applied to sequence generation
problems, e.g. TSP

Seamless integration into the sequence generation process:
sequences are constructed step by step

Independent of mutation and crossover
— Mutation and crossover are “destructive”

— Mutation: may lead to infeasible sequences (not all actions
are available in all contexts)

— Crossover: difficult to define, because sequence parts
cannot be arbitrarily exchanged, also leading to infeasible
sequences

o Tir Q. e W
455 = § 7z
Y VT A i \ B

Optimization Algorithm: Ant Colony Optimization
Idea: Q{HH)

+ C = component set (here: set of actions)

« Each component c;is associated with ﬂimf
a pheromone value p; -

» Generate trails (sequences of user
actions) by selecting components
according to pheromone values p;

+ After each generation reward components
that appear in “good” trails by increasing
their pheromones

+ Selection Rule: pseudo random proportional

+ Pheromone Update Rule: p,'= p,-(1-a)+a-r, (f>

(a : learning rate,r, : average fitness of the trails %/
that c; appeared in) ¢
7 o Tas Q. ‘ A 3 4 5
Fa 2 I T
berner mattner gk 1] A i \ u)
b M - A

Test Environment: Scanning the GUI

* In order to perform actions we first ‘__(m w;gngHﬂ:::ft)
need to determine the visible control 4. = =
elements and their properties (e.g.
to click a button: Is it enabled?
Coordinates?)

select user
action

,
« This information is saved in a

widget tree, which is a hierarchical representation of the GUI and
its control elements and properties

m ("good” ve
"bad" achons;

+ State of the GUI changes =» widget tree needs to be
constructed after each performed action

berner &mattner A
optimizing your development = WEY <0

[CTE CTE XL Professional =10 x|
Fle Edi - Search Window Help

| I S

£= outine £3 =0

An autine is not avalable. Active Wldget Tree

} (disabled)

Search

(R

[Properties &3
Propert

&~ &7’.{.""

berner &mattner J

fl
optimizing your development W

CTE CTE XL Professional
Fie Edit Search Window Help

Open. o

Close. Cirla
Close Al il S

Save cilis
Save Az
Save Al Gl St 45
Rzvert:
PHIRE, .
Pags Setup. .
g Import. .
i Expart...

Ex

DropDown
Menu

1 Properties &2

Propert | value

berner & mattner

optimizing your development

[cTE CTE X1 Professional

File Edt - Search Ufindow Help

| I

‘An outline is nok availablz,

CTENew Cte Diagram i
Create Cte Diagram
Specfy Fle name For new CTE fil,

File:

[Cr\pokumente und Einstellungen sebbatdeFaul. cte

[Properties E2

Propert;

| alue

w =0

berner &mattner
optimizing your development

T default5.cte - CTE L Professional

Fle Edt Diagram -Search Took Window Help

=8|
[| @ [~ e o e =
T s A |
B2 outine 23 dofaulSct s
(Crorame) 5|
ek noname_0
© noname 1
@ nonane 2
Fo noname_2
& Add Cassiication 7
5 Add Compostion 5

K]

Zis

Define Parent

Fie

Edit &

Format

& Tags

@ Change type

Sho Subtree

] show Properties Vi

5 Properties 53

@ Class noname_1

Property value
Core
Chicren
Appearance)
Name.

Tree
Figures

berner & mattner ||£ A

optimizing your development

"-{ e
¢ s

£ as

Test Environment: Derive + Execute User
Actions

Based on the information in the
widget tree, we can derive a set
of “reasonable” actions

Simplified Set of Possible Actions

scan GUI o
generale
widget tree

dernive sat
olusa-

nnnnn

)

leam ('good" vs
"bad" actions)

After the optimization
algorithm selected an
action, it will be
executed, e.g. click
button, drag scrollbar,

)

Y Vo

&~ ?’Jw"

berner &mattner J A

optimizing your development

lﬁ f.?:xm

Experiments: Fully Automatic Testlng of CTE XL

Professmnal

LE“’O'-E.'J‘:!

[cerotnte [G stoctin sctue | & et buve o OLcte |

Drawing area for
classification trees

Combination table for

test case specifications

Panel for establishing
RM/ TM connections

Bl
Y - .
smed g -30 - -
ik
-) =
= Dpmrez 7 — "
;
lg _ﬂ o | o
.. oo £ =5
Avalloble Intesfocns Estalchod Conmactions
M accass
o raw Ascan nbatacy
[oon
Qo remvCvers wimtogs

20

#2 iy
berner & mattner e
optimizing your development = WEY <0

Fitness

:

= & e

berner &mattner o+
optimizing your development ” e1¢

Experiment: Results

a -
’E&o

ACO Run Random Run
Sequence Fitness Sequence Fitness
160000 T 160000 T
Fitness | Fitness | I
140000 140000 [
120000 | 120000
100000 [100000 -
80000 E 80000
60000 ‘ 60000
40000 40000 4
 NRCHAHAA AL e T T T
Al AT AT AT
o 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Sequence Sequence
desc length popsize generations time per n avg best min max
run
aco 80 10 80 ~148 min 10 134729 118822 153978
rnd 30 10 80 ~148 min 10 89670 71480 101861

22

7 o TIE Q. : W 5‘_”

?#!‘l " # = b‘\“ - I ‘ 3 ’\‘
sarneremattner b D & 9
—

Systematic vs. Generated Test Sequences

» Automatic Regression Test Suite for CTE XL Professional
— 34 Sequences
— average length: 14 actions (max: 64, min: 6)
— average fitness: 61164 (max: 102031, min: 23466)

» Generated Sequences
— 34 Sequences
— length: 14
— average fitness: 91369 (max: 111866, min: 58248)

) 3= Q@ LA o3 s‘ v

\J ﬂ 4 N I 2 \‘
' YT e 9
Conclusion

High demand for automatic GUI testing in industrial practice
Typical B&M applications: CTE XL Professional, MESSINA (Eclipse RCP, SWT)

Test environment allows to
— determine all possible user actions in each execution state
— selects the most interesting actions
— assesses overall quality of test sequences by analyzing the call tree

Evaluation
— Application of search successful
— Initial experiments confirm better performance than random testing
— First interesting results compared to functional testing

Functional testing for logical errors difficult, because guidance to unknown logical
errors hard to formalize

Functional testing for exceptions, memory leaks, ... possible

24

s i W o X

3 !4 kil 2 - ! \‘
berner& mattner g | L I & 9
—
Outlook

Generate entire test suites

Possible improvement of algorithm to be more explorative
— Prefer sequences with yet unexecuted actions

Evaluate other objective functions

— not only number of call tree leaves, but method diversity within call tree,
or maximal call tree depth, etc.

— Other criteria such as code coverage, temporal testing, ...

Increase efficiency

— Sequence generation is expensive = parallelization of sequence
execution

— ACO good choice? =» disregards linkage among actions (context of
actions not considered during pheromone update)

Fault sensitivity of generated sequences =» empirical evaluation

25

